/*

* Cycle assist in the Sanyo/Sachs hub.
* Read out sensor values and determine
* 1its support from that. January 2020

*/

const int Thermistor_pin_out = 4; // 5V for
thermistor readout

const int Thermistor_pin_in = Al; // Analog
thermistor voltage readout

const int Batt_Volt_pin_in = A2; // Analog
battery voltage readout

const int driver_pin = 3; // Pin that
steers the motor driver.

bool ifdo_1im25 = true; // global

boolean, whether 25 km/h speed limit should be
enforced.

int Drive_ PWM = 0; // define the
initial drive support variable
int Drive_ PWM_recommend = 0; // the

recommended drive support from PAS and speed
sensor.

int Drive_ PWM _max_safe = 0; // The
maximum drive support according to safety checks.
bool ifdo_PWR_red_temp = true; //
initialize the ’'safety check’ booleans

bool ifdo_PWR_red_batt = true;

bool ifdo_disable_batt = true;

// REED SENSOR/WHEEL SPEED:

const int Reed_pin = 5; // Pin which
reads the reed (speed) sensor.

unsigned long reed_2_LOW = 0; // time stamp

of the last jump from LOW to HIGH of reed
readout.

unsigned long reed_2_HIGH = 0; // time stamp
of the last jump from HIGH to LOW of reed
readout.

double wheel_speed = 0; // Current

speed [km/h] of the wheel.

// HALL SENSOR/WHEEL SPEED:

const int PAS_pin = 6; // Pin which
reads the PAS (pedal) sensor.
unsigned long PAS_2_LOW = 0; // time stamp

of the last jump from LOW to HIGH of Hall sensor
readout.

unsigned long PAS_2_HIGH = 0; // time stamp
of the last jump from HIGH to LOW of Hall sensor
readout.

double cadence = 0; // Current
speed [Hz] of the pedal rotation.

void setup ()
{
// Upon startup:
Serial.begin(115200);
// Read if run in 25km-mode or 25km+mode:
check_25km_limit (PAS_pin);

// Initial settings:

digitalWrite (Thermistor_pin_out, HIGH); // Set
thermistor readout output pins to high:

// set the REED sensor to HIGH as default:

pinMode (Reed_pin, INPUT_PULLUP) ;

digitalWrite (driver_pin, HIGH); // No drive
support at startup.
}

void loop () {

// First perform safety checks, and determine
the maximum Drive support the motor can safely
provide:

Drive_PWM_max_safe =
Determine_PWM_max_safe (Thermistor_pin_in,
Batt_Volt_pin_in);

// Read the current state of the wheel speed
sensors, and if possible, update the wheel speed:
update_wheel_speed(Reed_pin);
// Read the current state of the pedal speed
sensors, and if possible, update the pedal speed:
update_cadence (PAS_pin);
// With that information, update the
recommended drive support level:
update_drive_support (Drive_PWM_max_safe);
// Write the signal to the motor driver:
analogWrite (driver_pin, 255-Drive_PWM) ;
//delay (100) ;
print_drive_variables () ;
//print_safety_variables () ;
}

void check_25km_limit (int PAS_pin)
{ // We wait a while to see if the pedals are
moved sufficiently in those first seconds:
unsigned long t_0 = millis(); // Time the start
unsigned long max_wait_total = 1000; //[msec]
while ((millis() - t_0) < max_wait_total)
{ // Measure the cadence:
update_cadence (PAS_pin);
}
Serial.print ("cadence: "); Serial.
print (cadence); Serial.print ("\n");
if (cadence > 150)
{ // If the cadence has risen enough from
zero, we 1lift the 25 km/h limitation:
Serial.print ("been here");
ifdo_1im25 = false;
}

cadence = 0; // reset the cadence to zero.

// Local function: print variables for debug:
void print_safety_variables (void)

Serial.print ("\n 25 1lim:");
Serial.print (ifdo_1im25);
Serial.print ("\t red_temp?:");
Serial.print (ifdo_PWR_red_temp) ;
(

Serial.print ("\t Voltage?:");

Serial.
print (Read_battery_voltage (Batt_Volt_pin_in));
Serial.print ("\t Low voltage?:");

Serial.print (ifdo_PWR_red_batt);
Serial.print ("\t Empty battery?:");
Serial.print (ifdo_disable_batt);

}

void print_drive_variables (void)

{

"\n wheel_speed:");
wheel_speed) ;

"\t cadence:");
cadence) ;

"\t PWM_max_safe:");
Drive_PWM_max_safe);
"\t Drive_PWM:");
Drive_PWM) ;

Serial.print
Serial.print
Serial.print
Serial.print
Serial.print
Serial.print
Serial.print
Serial.print

AN o~ TN o A~ e A~ o~

// Local function: check wheter the 25 km/h
limitation should be lifted
bool Enable_1im25(int 1im25_pin)

{
// If the user holds both battery check and on

button on, the 25 km/h limitation is lifted:
int Threshold_Voltage_from_Voltage_button = 2.
5; //[Volt] between GND and button.

bool ifdo_1im25 = true; // Boolean whether
motor support should be limited to 25 km/h top
speed.

if (analogRead(lim25_pin) <=
Threshold_Voltage_from_Voltage_button)

// The button was held pressed (connects
to GND), therefore we disable the 25 km/h limit:
ifdo_1im25 = false;
}

return ifdo_1im25;

// Local function, determine the maximum Drive
support the motor can safely provide:
int Determine_PWM_max_safe (int
Thermistor_pin_in, int Batt_Volt_pin_in)
{

// Check whether motor temperature is too high
for full power:

ifdo_PWR_red_temp =
Read_motor_temp (Thermistor_pin_in);

// Then check the battery voltage, if it is
low, we should reduce power:

ifdo_PWR_red_batt =
is_Batt_low (Batt_Volt_pin_in);

// Then check the battery voltage, if it is
empty, we should disable the drive:

ifdo_disable_batt =
is_Batt_empty (Batt_Volt_pin_in);

// From the above safety checks, determine the
maximum drive PWM duty cycle possible:

int Drive_PWM_max =
drive_support_max_safe(ifdo_PWR_red_temp,
ifdo_PWR_red_batt, ifdo_disable_batt);

return Drive_PWM_max;

// Local function: read out the motor
temperature, decide whether reduced power mode
should be enabled:

bool Read_motor_temp (int Thermistor_pin_in)

// The thermal resistor value is read out by a
voltage divider bridge

// consisting of the thermistor and an
external resistor.

int ext_resistor = 12; // [kOhm]

// At critically high temperatures, the
thermistor has a value of:

int thermistor_threshold = 8; // [kOhm]

// Now measure the voltage and compare to the
critical one:

int readout_threshold = 870 ;
//1023*ext_resistor/ (ext_resistor +
thermistor_threshold);

int readout = analogRead(Thermistor_pin_in);

int PWR_red = true;

if (readout < readout_threshold)

{
PWR_red = false;

}
return PWR_red;

// Local function: judge whether the drive needs
to reduce power, or disable, due to too low
battery voltage:
bool is_Batt_low (int Batt_Volt_pin_in)
{

bool PWR_red = true;

// Define the constants and thresholds:

int thres PWR_red_volt = 3.2*6; //[Volt] Below
this voltage, reduced power mode should be
enabled.

// Read the battery voltage:

double Batt_volt =
Read_battery_voltage (Batt_Volt_pin_in);

// Compare the battery voltage to the

thresholds for reduced power and drive disable:
if (Batt_volt > thres_PWR_red_volt)

{
PWR_red = false;

}
return PWR_red;

// Local function: judge whether the drive needs
to disable, due to too low battery voltage:
bool is_Batt_empty(int Batt_Volt_pin_in)
{
bool ifdo_drive_disable = true;
// Define the constants and thresholds:
int thres_ PWR_drive_disable = 3.0*6; //[Volt]
Below this voltage, the drive should be disabled.
// Read the battery voltage:
double Batt_volt =
Read_battery_voltage (Batt_Volt_pin_in);
// Compare the battery voltage to the
thresholds for reduced power and drive disable:
if (Batt_volt > thres_PWR_drive_disable)
{

ifdo_drive_disable = false;

}

return ifdo_drive_disable;

// Local function: read out battery voltage, to
be within safe cell voltage limits:
double Read_battery_voltage (int Batt_Volt_pin_in)
{

// The battery voltage is read by constructing
a voltage dividing bridge, with the resistor

values:
int R1 = 12; //[kOhm] Resistor from Battery

plus to analogRead pin.
int R2 = 2; // [kOhm] Resistor from

analogRead to GND.
int Batt_volt_readout =
analogRead (Batt_Volt_pin_in);

double Batt_volt = (double) (R1+R2)/(R2) *
Batt_volt_readout*5/1024;
return Batt_volt;

// Local function to define a maximum Drive
support, using the safety checks performed
before:

int drive_support_max_safe (bool
ifdo_PWR_red_temp, bool ifdo_PWR_red_batt, bool
ifdo_disable_batt)

{

// Determine the maximum amount of support we
can safely deliver:

int PWM_max = 255;

// Check whether the power should be reduced:

if (ifdo_PWR_red_temp || ifdo_PWR_red_batt)

{ PWM_max = 125;}

if (ifdo_disable_batt)

{ PWM_max = 0;}

return PWM_max;

// Local function to calculate the current wheel
rotation speed, i1f possible:
void update_wheel_speed(int REED_pin)
{

// 25 km/h: 1/12.5= 80 ms between reed pulses

double dt_HIGH_max = 500; //[msec] Larger than
this means wheel standstill

double dt_LOW_max = 400; //[msec] Larger than
this means wheel standstill

double nof_running_averages = 20; // The
cadence 1s updated with running averages.

unsigned long t_now = millis(); // [msec]
measure the current time

int reed_status = digitalRead (REED_pin);
//"LOW’ (means that a magnet is in front of the
sensor, high means there is not):

// Which status was read last?

if (reed_2_HIGH == 0 && reed_2_LOW == 0)

{ // This probably means that neither value
has ever been recorded, we therefore have no
speed information and recommend no support:

wheel_speed = 0;

if (reed_status == LOW)

{ reed_2_1LOW = t_now; } // Initialize the
first timestamp}

if (reed_status == HIGH)

{ reed_2_HIGH = t_now; }// Initialize the
first timestamp}

return;

if (reed_2_HIGH > reed_2_LOW){ // The switch
from LOW to HIGH was read last:
//Serial.print ("\t LOW to HIGH switch was
read last");

if (reed_status == LOW) { // This means we
have a switch of level compared to the last
readout.

// We overwrite the reed_2_LOW time stamp:
reed_2_ _LOW = t_now;

}

// If the level has not switched, it might
have been too long in the same status (standing
still):

if ((reed_status == HIGH && (t_now -
reed_2_HIGH) > dt_HIGH max) || reed_2_LOW == 0)

{ // This means the pedals are practically

standing still, or have not moved yet:
wheel_speed = 0;//recommend no support.
//Serial.print ("\t Too long in HIGH! no
support");
return;

}

return;

if (reed_2_HIGH < reed_2_LOW) { // The ’'LOW’
status was read last:
//Serial.print ("\t HIGH to LOW switch was read
last");
if (reed_status == HIGH) { // This means we
have a switch of level.
// We overwrite the reed_2_HIGH time stamp:
reed_2_ HIGH = t_now;
// We can measure how long this switch of
level took:
double dt_HIGH = (t_now - reed_2_LOW);
// From this, we can measure the speed:
double current_wheel_ speed =
(25*80) /dt_HIGH;
// Here we assume that the wheel speed is
within acceptable limits:
if (current_wheel_speed > wheel_speed){ //
If the cadence increases, we let it increase
slowly through running average:
wheel_ speed =
(nof_running_averages*wheel_speed +
current_wheel_speed)/ (nof_running_averages+1l) ;
// [km/h]
}
1if (current_wheel_speed <= wheel_speed) {
// If it has decreased, we must act quickly in
case of a stop.
wheel_speed = current_wheel_speed; //
[km/h]

}
if ((reed_status == LOW && (t_now -
reed_2_LOW) > dt_LOW_max) || reed_2_HIGH == 0)
{ // This means the pedals are practically
standing still:
wheel_speed = 0;//recommend no support.
//Serial.print ("\t Too long in LOW! no
support");
return;
}

return;

// Local function to calculate the current wheel
rotation speed, i1f possible:
void update_cadence (int PAS_pin)
{
// // 8 magnets in the PAS sensor, 8 block
signals per rotation
// // The minimum rotation speed of the pedal
is 0.5 Hz, so 4 Hz (250 millisecond) for the
signal:

double dt_HIGH_max = 400; //[msec] Larger than
this means standstill of pedals

double dt_LOW_max = 250; //[msec] Larger than
this means standstill of pedals

double nof_running_averages = 4; // The
cadence 1s updated with running averages.

unsigned long t_now = millis{(); // [msec]
measure the current time

int PAS_status = digitalRead (PAS_pin); //’'LOW’
(means that a magnet is in front of the sensor,
high means there is not):

// Which status was read last?

if (PAS_2_HIGH == 0 && PAS_2_LOW == 0)

{ // This probably means that neither value
has ever been recorded, we therefore have no
speed information and recommend no support:

cadence = 0;

if (PAS_status == LOW)
{ PAS_2_LOW = t_now;}
if (PAS_status == HIGH)

{ PAS_2_HIGH = t_now; }

if (PAS_2_HIGH > PAS_2_LOW){ // The switch
from LOW to HIGH was read last:
//Serial.print ("\t LOW to HIGH switch was
read last");

if (PAS_status == LOW) { // This means we
have a switch of level compared to the last
readout.

// We overwrite the PAS_2_ LOW time stamp:
PAS_2_LOW = t_now;

}

// If the level has not switched, it might
have been too long in the same status (standing
still):

if ((PAS_status == HIGH && (t_now -
PAS_2_HIGH) > dt_HIGH_max) || PAS_2_LOW == 0)

{ // This means the pedals are practically
standing still, or have not moved yet:

cadence = 0;//recommend no support.
//Serial.print ("\t Too long in HIGH! no
support");
return;
}
return;

if (PAS_2 HIGH < PAS_ 2 LOW) { // The ’LOW’
status was read last:

//Serial.print ("\t HIGH to LOW switch was read
last");
if (PAS_status == HIGH) { // This means we
have a switch of level.
// We overwrite the PAS_2_HIGH time stamp:
PAS_2_ _HIGH = t_now;
// We can measure how long this switch of
level took:
double dt_HIGH = (t_now — PAS_2_ LOW);
// From this, we can measure the speed:
double current_cadence =
max (max (dt_HIGH_max, dt_LOW_max) - dt_HIGH, 1);
// [Hz]
//Serial.print ("\t current cadence: ");
Serial.print (current_cadence);
// Here we assume that the cadence is
within acceptable limits:
if (current_cadence > cadence){ // If the
cadence increases, we let it increase slowly
through running average:
cadence = (nof_running_averages*cadence
+ current_cadence) / (nof_running_averages+1l); //
[Hz]
}
if (current_cadence <= cadence){ // If it
has decreased, we must act quickly in case of a
stop.

cadence = current_cadence; // [Hz]
}
}
if ((PAS_status == LOW && (t_now -
PAS_2_LOW) > dt_LOW_max) || PAS_2_HIGH == 0)

{ // This means the pedals are practically
standing still:
cadence = 0;//recommend no support.
//Serial.print ("\t Too long in LOW! no
support");

return;

return;

// Local function to determine the Drive_PWM:
int update_drive_support (int PWM_max_safe)

{

// Set constants and Parameters:

int dPWM_max_increase = 1; // Maximum
increase of drive support compared to the
previous

int dPWM_max_decrease_25= 1; // Maximum
decrease of drive support compared to the
previous, in 25 km/h mode.

float cadence_minimum = 200; // Minimum
cadence, below no drive support

float wheel_speed_minimum = 0.3; // Minimum
wheel speed, below that: no drive support

// 25 km/h: 1/12.5= 80 ms between reed pulses

double dt_25 = 80; //[msec]

// Disable the support if the cadence or speed
is at zero, or safety checks command a stop of

support:
if (wheel_speed <= wheel_speed_minimum ||
cadence <= cadence_minimum || PWM_max_safe == 0)

{
Drive_PWM = 0;
return O;

// Determine whether the 25 limit is enabled:
1if (ifdo_1lim25 == true && wheel_speed > 25)
{// We are driving faster than 25 km/h, while we
should not, reduce support:
Drive_PWM = max ((Drive_PWM -

dPWM_max_decrease_25), 0);

}

else { // Write the PWM_drive, with the
limitation of the maximum increase of drive
support:

Drive_PWM_recommend =
(cadence—-cadence_minimum) *1.5 +
(wheel_speed-wheel_speed_minimum) *4;

Drive_PWM = min(Drive_PWM +
dPWM_max_increase, Drive_PWM_recommend) ;

}

// Overwrite the drive PWM in case of any
Power reduction or disabling:

Drive_PWM = min (Drive_PWM, PWM_max_safe);

return Drive_PWM;

